	VEWIN	WB 4.1 blad 2
De uitstroomopening van de toevoerleiding voor het vullen van het		
reservoir uit de drinkwaterinstallatie of uit de aans/uiting dient zodanig		
boven het hoogst mogelijke waterniveau in het reservoir te zijn		
gelegen, dat geen water uit het reservoir in de toevoerleiding han		
geraken.		
De toevoerleiding mag niet door het zich in het reservoir oevindende		
water zijn gevoerd.		
De vulinrichting en de uitstroomopening van de toevoerleiding in het		
reservoir moet voor inspektie en reparatie gemakkelijk bereikbaar zijn.		

2.1 Het moet uitgesloten zijn, dat water uit het reservoir terugstroomt in de toevoerleiding van het drinkwaternet. Behalve dat de overloop hierop berekend moet zijn, dient tevens he: hoogteverschil tussen het laagste punt van de uitstroomopening in de toevoerleiding en de bovenzijde van de overloopleiding een afmeting te hebben van tweemaal de inwendige middellijn van de toévoerleiding mêt een minimum van 20 mm . (Zie principeschetsen punt 9.1 tot en met 9.4).
2.2 De toevoerleiding mag niet door het in het reservoir/alanwezige water worden gevoerd.
De vulleiding mag niet uitmonden in de nabijheid van de zuigmond van de zuigleiding naar de pompinstallatie, dit om te voorkomen dat tijdens het vullen lucht wordt meegeyoerd, waardoor de pompen in ongerede kunnen raken. Bij de konstruktie en plaats van de uitloop van de toevoerleiding dient ervoor te worden gezorgd, dat een goede doorstroming van het water in het reservoir wordt verkregen.
2.3 Het vullen van het reservoir kan worden uitgevoerd met een elektrisch, hydraulisch of pneumatisch bediende afsluiter. Deze afsluiter mag geen ontoelaatbaar hoge drukstoten veroorzaken. Als vuistregel kan een sluittijd van ée seconde per $\mathrm{m}^{3} / \mathrm{h}$ volumestroom gehanteerd worden, met een minimum van 5 seconden (de regelkarakteristiek van de afsluiter dient hieraan te voldoen). De afsluiter dient buiten het resenvoir te worden gemonteerd, zodat bij defekten het reservoir afgesloten kan blijven en niet van buitenaf verontreinigd wordt. Tevens dient om deze afsluiter een omloopleiding (met afsluiter) te worden aangebracht, zodat bij defekten de drinkwatertoevoer met de hand geregeld kan worden. Het verdient aanbeveling voor de vulafsluiter een gemakkelijk te reinigen zeef of separator te plaatsen.
Niveauregeling en niveaumeting.
Het reservoir moet voorzien zijn van apparatuur voor het meten en regeien van waterstanden. Deze apparatuur dient buiten het reservoir te worden aangebracht. Als de apparatuur in een niveaukolom wordt ondergebracht, dient deze kolom afsluitbaar en aftapbaar te zijn. Alle op het reservoir zelf aangesloten meet- en regelapparatuur
dient afzonderlijk afsluitbaar en aftapbaar te zijn. Een te hoge en te lage waterstand dient te worden gesignaleerd. Een signalering bil 30% van de inhoud is gewenst. Indien het water uit het reservoir door middel van een pomp wordt onttrokken dient een beveiliging te worden aangebracht die de pomp bij lage waterstand autornatisch uitschakelt. Signaleringen van hoog- en laagwater en beveiligingen moeten onafhankelijk werken van de niveauregelingen (yoor reservoirs $\leqslant 1 \mathrm{~m}^{3}$ zie punt 8).

3. Overloop of overstort

In artikel 4.1.3 van NEN 1006 is hieromtrent het volgende gesteld:
Het reservoir dient te zijn voorzien van een overloop of overstort waarvan de afvoerleiding niet onmiddellijk met een afvoersysteem mag zijn verbonden.
De overloop of overstort dient een zodanige afvoermogelijkheid te bezitten, dat indien het reservoir met de maximale volumestroom water wordt gevuld en het water uitsluitend door de overloop of overstort wordt afgevoerd, het waterniveau in het reservoir beneden de uitstroomopening van de toevoerleiding blijft.
Het via de overloop of overstort wegstromende water moet kunnen worden waargenomen en/of gesignaleera.
3.1 Het reservoir moet voorzien zijn van een overloop van een zodanige doorlaat, dat de afvoervolumestroom groter is dan de grootst mogelijke toevoer. De doorlaat van de overloop kan worden bepaald met behulp yan de in fig. A a angegeven grafiek.

	VEWIN	WB 4.1	blad 5

3.2 Indien de overloop met een trechter wordt uitgevoerd (zie principeschetsen punt 9) dan dient de middellijn van de bovenrand van de trechter tenminste zesmaal de middellijn van de overloopleiding te zilin.
3.3 De overloopleiding moet zijn voorzien van een waterslot met een hoogte van tenminste tweemaal de inwendige middeilijn van de overloopleiding met een minimum van 50 mm . Het vullen (gevuld houden) van het waterslot kan op de hiernavoigende wijze geschieden:
a. door de leiding waarmee het ontlastwater van een watergestuurde vulafsluiter wordt afgevoerd, aan te sluiten op het waterslot;
b. door het waterslot periodiek (bijvoorbeeld tweemaal per maand) te vullen via een hand- of automatisch bediende afsluiter;
c. door bij binnen het reservoir aangebrachte watersloten een gaatje van 3 mm in de overloop aan te brengen direkt onder de normaal hoogste waterstand in het reservoir.
3.4 Er dienen maatregelen te zijn getrofien om het/binnendringen van insekten en ongedierte te voorkomen. Mogelijkheden hiertoe zijn onder andere kunststof- of roestvast staalga as met een maaswijdte van 5 mm (netto oppervlak van het gaas moet tenminste gelijk zijn aan de oppervlakte van de dooflaat) of een scharnierende klep, opgehangen in een mes-pankonstruktie, die het einde van de overloopleiding afsluit, doch bij het overlopen van het reservoir door de waterstroom wordt opengedrukt.
3.5 De overloopleíding mag niet rechtstreeks op de riolering zijn aangesloten. Et moet een ziehtbare onderbreking over een hoogte van tenminste 50 mm aanwezig zijn. Indien wordt geloosd op de riolering dient na de onderbreking een waterslot te worden aangebracht om het verspreiden van rioolgassen via deze leiding te verhinderen. (Zie principeschets punt 9.4).

4. Wateronttrekking

In artikel 4.1.4 van NEN 1006 is hieromtrent het volgende gesteld:
De wateronttrekking uit het reservoir dient zodanig te geschieden, dat het water in het reservoir voldoende wordt ververst.
4.1 Om een zo goed mogelijke verversing van het drinkwater in het reservoir te verkrijgen dient de zuigleiding:
a. op een zo laag mogelijk punt in het reservoir te zijn aangesloten;
b. op een zo groot mogelijke afstand tegenover de toevoerleiding te worden aangebracht.

	VEWIN	WB 4.1	blad 6

4.2 Pompen dienen bij voorkeur beneden de laagst in het reservoir voo:komende waterstand te worden opgesteld. Dit om te zorgen dat de pompen gevuld blijven (,,verdronken" opsteliing).
5. Inspectie en reiniging

In artikel 4.1.5 van NEN 1006 is hieromtrent het volgende gesteid: Het reservoir dient toegankelijk te zijn voor inspectie en reiniging. Het voor reiniging van het reservoir gebruikte water dient op een andere wijze dan via de binnenleiding te worden afgevoerd. De daarvoor bestemde leiding mag niet onmiddellijk met een afvoersysteem zijn verbonden.
5.1 Reservoirs dienen van een mangat te zijn voorzien, waarvan de kleinste afmeting tenminste 700 mm bedraagt.
Bij het openen of sluiten van een inspectie- of mangat mag geen vuil in het reservoir komen, hiertoe dient om een dergelijke opening een opstaande rand (zie schets punt 9.5) te worden aangebracht. Alle inspectie- of mangaten moeten water- en luchtdicht kunnen worden afgesloten.
5.2 Het reservoir moet op een zo laag mogelijk punt zijn voorzien van een spui- of leegloopleiding. Als de spul- of leegloopleiding op een riolering wordt aangesloten dient er een zichtbare onderbreking over een hoogte van tenminste 50 mm aanwezig té zijn. De middellijn van deze spui- of leegloopleiding dient voldoende groot te zijn en bij voorkeur een gelijke middelilijn te hebben als de overloopleiding.
5.3 Voordat een drinkwaterreservoir in bedrijf wordt gesteld, dienen het reservoir en de hieraan verbonden leidingen te worden gedesinfecteerd volgens de in WB 2.4 "Desinfectie van drinkwaterinstallaties" omschreven methode. Het/reservoir mag eerst in gebruik worden genomen, nadat dit voor wat betreft de uitvoering is goedgekeurd door het waterleidingbedrijf en nadat een erkend waterleidinglaboratorium de bacteriologische gesteldheid van het water heeft gekontroieerd en in orde bevonden. Indien in een perceel gevaarlijke chemische stoffen aanwezig zijn moet het laboratorium de chemische samenstelling van het water eveneens kontroleren. Het water uit een in bedrijf genomen reservoir aient bij voorkeur viermaal per jaar doch tenminste éenmaal per jaar door een erkend waterleidinglaboratorium te worden onderzocht op bacteriologische betrouwbaarheid. Een jaarlijkse technische inspektie is eveneens gewenst. Indien het drinkwater niet aan de gestelde eisen voldoet, dienen de nodige maatregelen in overleg met het waterleidingbedrijf te worden genomen.

6. Afmetingen

In artikel 4.1.6 van NEN 1006 is hieromtrent het volgende gesteld:
Het reservoir dient van zodanige afmetingen te zijn, dat de inhoud is afgestemd op de aanvoermogelijkheden en op het verbruik.
6.1 De inhoud van een reservoir zal afhankelijk zijn yan het doel waar-/ voor het reservoir wordt toegepast. Argumenten voor het plaatsen van een reservoir kunnen zijn:
a. onderbreking van de drinkwaterinstallatie (hygiënische veiligheid);
b. voorraadvorming met het oog op calamiteiten;
c. tarief (capaciteitstarief);
d. volumestroom van de aansluiting te gering.

In het algemeen kan worden gesteld, dat voor de inhoud van een drinkwaterreservoir 50 tot 200% van het gemiddelde etmaalverbruik kan worden aangenomen. Dit is afhankelijk van de gewenste reserve-inhoud en van het watertarief.

7. Uitvoering

In artikel 4.1 .7 van NEN 1006 is hieromtrent het volgende gesteld:
Het reservoir dient:
a. bestand te zijn tegen de onder normale omstandigheden erop werkende krachten:
b. te zijn vervaardigd van een corrosievast materiaal of op een afdoende wijze tegen corrosie te zijn beschermd; het materiaal of de bekleding mag geen toxische of andere stoffen aan het water afgeven waardoor de hygiënische kwä̈teit evvan nadelig wordt beïnvloed;
c. inwendig glad te zijn afgewerkt;
d. te zijn voorzien van be- en ontluchtingen die zodanig zijn geconstrueerd dat onder alle omstandigheden de atmosferische druk in het reservoirgehandhaafd blijft;
e.gevrijwaard te zijn tegen bevriezing, overmatige verwarming, lichtinval en het bimnendringen van verontreinigingen;
f. bijvoorkeur boven de grondwaterstand te zijn gelegen en in ieder geval niet/direkt met het grondwater in aanraking te komen.
7.1 Het materiaal, waaruit een reservor is samengesteld, mag de kwaliteit van het water niet nadelig beïnvloeden, het mag in geen geval reuk, smaak of kleur aan het water afgeven en evenmin giftige bestanddelen in concentraties, die voor de volksgezondheid schadelijk kunnen zijn (materialen met KIWA-Keur of Attest).
Mogelijkheden hiertoe zijn onder andere beton, staal met een beschermingslaag, roestvast staal, kunststoffen zoals PVC, polyetheen (PE) of gewapend polyester.

| | VEWIN | WB 4.1 blad 8 |
| :--- | :--- | :--- | :--- |

De te gebruiken materialen mogen niet lichtdoorlatend zijn om algen. groei te voorkomen.
7.2 Betonnen reservoirs behoeven in- en uitwendig niet beschermd te worden. Inwendig moet het reservoir vlak en glad worden afgewerkt. Scherpe hoeken bij wanden, vloeren en kolommen moeten vermeden worden. De afschuining van de hoeken dient tenminste 20 mm te zijn.
7.3 Stalen reservoirs dienen inwendig tegen corrosie te worden beschermd met een bekleding waarop het KIWA-Attest op Toxicologische Aspecten (ATA) is afgegeven.
In de grond liggende stalen reservoirs dienen uitwendig eveneens te worden voorzien van een bekleding, bijvoorbeeld overeenkomstig hoofdstuk 14 van NEN 3350.
Het aanbrengen van de in- en uitwendige bekleding moet door het KIWA worden goedgekeurd.
Bovengronds of binnenshuis aangebrachte stalen reservoirs kunnen uitwendig geverfd worden.
In principe moeten in de grond liggende danwel met grond afgedekte stalen reservoirs - bij een bodemweerstand kleiner dan $5000 \Omega \mathrm{~cm}$ voorzien worden van een kathodische bescherming.
7.4 Konstrukties voor mangaten, ontluchtingen, overloop en niveaukolom van betonnen reservoirs kunnen onder andere uitgevoerd worden in bekleed staa, roestvast staal, glasvezelgewapend polyester of slagvast PVC.
Doorvoeringen in betonnen reservoirs moeten bij voorkeur worden uitgevoerd in roestvast staal of van staal in- en uitwendig beschermd. Stalen doorvoeren kumnen daar waar het met beton in aanraking komt onibehandeld blijven. (Zie schetsen punt 9.5).
7.5 Ont- en beluchting.

Het reservoir dient te ziin voorzien van éen of meerdere ont- en beluchtingsopeningen. De ont- en beluchtingsopeningen in het reservoir dienen hogep dan de vulleiding te zijn aangebracht. Elke ont- en beluehtingsgoening dient te worden voorzien van een filter. Met de mogelijkheid dat filters bij vorst kunnen gaan dichtzitten, dient rekening te worden gehouden. De keuze van het filtertype (bijvoorbeeldeen zweefstoffilter) kan afhankelijk ziin van de plaatselijke omstandigheden en dient in overleg met het waterleidingbedrijf te worden bepaald. Door het filter dient voldoende lucht te kunnen toestromen en ontwijken, zodat nagenoeg geen over- of onderdruk in het reservoir kan optreden. Bij wateronttrekking uit het reservoir of bij vulling hiervan met de maximale volumestroom mag het drukverschil tussen reservoir en buitenlucht niet meer dan 400 Pa ($4 \mathrm{~cm} w k$) bedragen.

Het verdient aanbeveling om een signalering aan te brengen, die een te grote filterweerstand signaleert.
7.6 De opstellingsplaats en de uitvoering dienen zodanig te zijn dat er geen kans bestaat, dat de temperatuur van het water 4 hetreservoir overmatig hoog of laag wordt (hoger dan $293 \mathrm{~K}\left(20^{\circ} \mathrm{C}\right)$ of lager dan $275 \mathrm{~K}\left(2^{\circ} \mathrm{C}\right)$).
7.7 Het reservoir moet zodanig zijn uitgevoerd, dat hierin geen vreemde stoffen binnen kunnen dringen, daarom dienen in de grond aan te brengen reservoirs boven de hoogst voorkomende grondwaterstand te zijn gelegen. Indien dit niet mogelijk is kan in overleg met het waterleidingbedrijf een konstruktie worden gekozen, waarbij het eventuele lekwater kan worden waargenomen. Voor/een schematische opstelling van een reservoir, uitgevoerd in een zogenaamde dubbelwandige konstruktie zie principeschets punt 9.3.
8. Kleine drinkwaterreservoirs

Voor een drinkwaterreservoir met een inhould kleiner dan $1 \mathrm{~m}^{3}$ (zie principeschets punt 9.4) is het uit praktische overwegingen toegestaan dat:
a. een vlotterkraan als afsluitmechanisme in het reservoir wordt toegepast. Als doof de vlotterkraan hinderlijke drukstoten worden veroorzaakt, dient in het reseryoir een tussenschot te worden aangebracht;
b.geen niveau-aanwijzer (peilglas) en signalering wordt aangebracht;
c. voor de overloopleiding een middellijn wordt aangehouden, die geliik of groter is dan tweemaal de middellijn van de toevoerleiding met een minimum van 20 mm . Het vertikale gedeelte van de overloopleiding (zie schets) dient daarbij tenminste 400 mm te bedragen,
d.de pomp niet beneden de laagst in het reservoir voorkomende waterstand wordt geplaatst (zie schets);
e. geen monsterkraan wordt aangebracht;
f. de spuikraan vervangen wordt door een aftapplug;
g. het reservoir wordt uitgevoerd met een inspectiegat in plaats van een mangat. De kleinste afmeting van het inspectiegat dient tenminste 200 mm te zijn.

9.1 Binnen opgesteld drinkwaterreservoir.

A $=$ Signalering te hoge waterstand.
$B=$ Hoogste waterstand (vulmechanisme gesloten).
C = Vulmechanisme opent (yullen drinkwaterreservoir).
$D=$ Signalering (b.v. drinkwaterreservoir is minder dan 30\% gevuld).
$\mathrm{E}=$ Signalering te lage waterstand (tevens vergrendeling van de pompen).
F = Niveaukolom waaraan de sturing van het vulmechanisme wordt ontleend.
$\mathrm{G}=$ Peilglas, afsluitbaar en aftapbaar (bij toepassing van 2 peilglazen moeten deze elkaar overlappen).
$H_{1}=$ Hoogte onderbreking, zie punt 2.1.
$\mathrm{H}_{2}=$ Hoogte waterslot, zie punt 3,3.
$\mathrm{J}=$ Vulmechanismemet omloopleiding.
$K=$ Toevoerleiding.
$L=$ Plaat voor het breken van de waterstraal.
$\mathrm{M}=$ Luchtfilter op be - en ontluchtingspijp (zie punt 7.5).
$\mathrm{N}=$ Mangat (kleinste afmeting min. 700 mm).
$\mathrm{O}=$ Afvoer-C.q. zuigleiding naar (pomp) installatie verbruiker.
$\mathrm{P}=$ Aftapkraan niveaukolom.
$\mathrm{F}=$ Tapkraan $1 / 2^{\prime \prime}$ inet gladde uitloop voor het nemen van watermonsters.
S = Spui- en leegloopkraan.
$\mathrm{T}=$ Overloopleiding (zie punt 3).
$\mathrm{U}=$ Vuilwaterput eventueel met pomp.
$\mathrm{V}=$ Aanbevolen alarmering "water op de vloer" die tevens het vulmechanisme afsluit en de pompen uitschakelt.

	VEWIN	WB 4.1	blad 12

9.3 Drinkwaterreservoir aangebracht beneden de hoogst voorkomende grondwaterstand, zogenaamde dubbele konstruktie (uitvoering alleen in overleg met het waterleidingbedrijf, zie punt 7.7).

F = Niveaukolom waaraan de sturing varn het vulmechanisme wordt ontleend.
$\mathrm{G}=$ Peilglas, afsluitbaar en aftapbaar (bij toepassing van 2 peilglazen moeten deze elkaar overlappent.
$\mathrm{H}_{1}=$ Hoogte onderbreking, zie punt 2.1.
$\mathrm{H}_{2}=$ Hoogte waterslot, zie punt 3.3.
$\mathrm{J}=$ Vulmechanisme met omloopleiding.
$\mathrm{K}=$ Toevoerleiding.
L = Plaat voor het breken van de waterstraal.
$\mathrm{M}=$ Luchtfilter op be-en ontiuchtingspijp (zie punt 7.5).
$\mathrm{N}=$ Mangat kleinste afmeting min. 700 mm (bij voorkeur binnen opgesteld, indien buiten opgesteld tenminste 500 mm boven maaiveld of afdekking).
$\mathrm{O}=$ Afvoer-c.a. zuigleiding naar (pomp) installatie verbruiker.
$\mathbf{P}=$ Aftapkraan niveaukolom.
$\mathrm{R}=$ Tapkraan ${ }^{1 / 2} \mathbf{2 n}^{\prime \prime}$ met gladde uitloop voor het nemen van watermonsters.
$\mathrm{S}=$ Spui- en leegloopkraan.
$T=$ Overloopleiding (zie punt 3).
$\mathrm{U}=$ Vuilwaterput eventueel met pomp.
$\mathrm{V}=$ Aanbevolen alarmering „water op de vloer" die tevens het vulmechanisme afsluit en de pompen uitschakelt.
W= Zuigkuil.
$\mathrm{X}=$ Maaiveld.
$\mathrm{Y}=$ Klimijzers.
$Z=$ Hoogst voorkomende grondwaterstand.
9.4 Drinkwaterreservoir met een inhoud $\leqslant 1 \mathrm{~m}^{3}$.

$B=$ Hoogste waterstand (vulmechanisme gesloten).
$E=$ Waterstand waarbij laagwaterbeveiliging in werking treedt.
$\mathrm{H}_{1}=$ Hoogte onderbreking, zie punt 2.1.
$\mathrm{H}_{2}=$ Hoogte waterslot, zie punt 3.3.
$\mathrm{H}_{3}=$ Vertikale lengte overloopleiding (min .400 mm).
$\mathrm{H}_{4}=$ Zichtbare onderbreking tussen overloopleiding en riolering (min. 50 mm).
$K=$ Toevoerleiding.
$L=$ Tussenschot ter voorkoming van lucht in de afvoer- c.q. zuigleiding.
$M=$ Luchtfilter op be- en ontluchtingspijp (zie punt 7.5).
$N=$ Man- of inspectiegat.
$0=$ Afvoer-c.q. zuigleiding naar (pomp)installatie verbruiker.
$s=$ Aftapkraan of aftapplug.
$T=$ Overloopleiding uitmonding afgedekt met gaas (inwendige middellijn geliak of groter dan $2 \times$ de inwendige middellijn toevoerleiding (K) met een min van 20 mm).
$U=$ Leiding naar riolering.

| | VEWIN | WB 4.1 blad 14 |
| :--- | :--- | :--- | :--- |

9.5 Muurdoorvoeringen en onderdelen van een betonnen drinkwaterreservoir.

E
F
$A=$ Mangat, kleinste afmeting tenminste 700 mm . Bij buiten opgestelde reservoirs dient het mangatdeksel tenininste 500 mm boven het maaiveld of de afdeklaag te zijn gelegen.
$B=$ Ont-, beluchting zogenammde kapkonstruktie.
$C=$ Ont-, beluchting zogenaamd wandelstokmodel.
D = Muurstuk met eliptische zuigmond.
$E=$ Muurstuk van roesivaststaal.
F = Muurstuk met afzonderlijke waterveerende pijp.

Alle stalen onderdelen, behalve de delen die met de beton in aanraking komen, dienen-overeenkomstig punt 7.3 - in- en uitwendig te worden beschermd.
De bekleding moet worden goedgekeurd door het KIWA.

Het verdient aanbeveling om muurstukken met een middellijn $\leqslant 40 \mathrm{~mm}$ uit te voeren in roestvaststal.

